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Abstract. By generalizing recently obtained results we calculate the excess noise factor (Petermann factor)
for a laser system with non-orthogonal eigenmodes. The quantum consistency of the calculation is shown
through the explicit conservation of input-output commutation rules. As a result of the calculation, the
excess noise in the lasing mode is shown to depend on the laser gain below threshold, and on the noise
analysis frequency below and above threshold.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 42.55.Ah General laser
theory – 42.60.Da Resonators, cavities, amplifiers, arrays, and rings

1 Introduction

Several theoretical and experimental studies have been re-
cently devoted to the excess quantum noise which appears
in lasers with non-orthogonal eigenmodes. One striking
feature of such systems is that the laser linewidth can be
much larger than the usual Schawlow-Townes linewidth,
by a factor which is known as the Petermann excess noise
factor K [1–5]. In recent experiments, excess noise factors
as large as several hundreds have been reported in lasers
with non-orthogonal transverse [6–9] or polarization [10]
modes.

From a theoretical point of view, the essential feature
of these laser systems is their non-Hermitian character,
leading to non-orthogonal eigenmodes [2]. In particular,
losses due to the aperturing within the cavity play an es-
sential role in the definition of transverse laser modes [6–
9]. This feature has very important consequences. First,
the relation between input and output laser modes in
a cavity round trip is non-unitary, and it is also non-
invariant under propagation reversal. Second, as it was an-
alyzed in detail by Siegman [2], one can define laser eigen-
modes as modes which reproduce after one round trip in
the cavity, up to a complex multiplicative constant. Then
the set of laser eigenmodes {un} is non-orthogonal, but it
is bi-orthogonal to another “adjoint” set of modes {vn},
where the set {v∗n} is obtained by reverting the direction
of propagation in the cavity. One has therefore:

(un, un) = 1, (un, vm) = δnm , (1)

where ( , ) denotes the Hermitian scalar product. It fol-
lows from equation (1) that the modes of the set {vn}
cannot be normalized. For a given resonator, the set of
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modes {un} and {vn} can be calculated numerically; it is
then straightforward to calculate K, which is simply given
for mode n by [5,6]

Kn = (vn, vn) . (2)

Though this picture works quite efficiently, and is in
very good agreement with the experiments, it has some
built-in conceptual difficulties. The main one is how to
turn this semi-classical model into a fully quantum de-
scription: the complex amplitudes of a set of classical
non-orthogonal modes cannot be turned into a set of non-
commuting operators [3], because of problems related to
unitarity (such a procedure would violate the conserva-
tion of probability). In a recent paper [11], we showed on
a simple “toy model” that this difficulty can in principle
be solved by introducing appropriate “vacuum modes” [4],
that allow one to recover the unitarity of the input-output
scattering matrix [12,13]. The purpose of the present pa-
per is to generalize this approach to a laser with an ar-
bitrary mode configuration. As in reference [11], the laser
cavity is described using a scattering matrix, which ap-
pears to be non-unitary when restricted to the subset of
laser modes, while it is unitary (as it should be expected)
when the set is extended to include modes in loss and gain
channels.

The paper is organized as follow: in Section 2, we
consider the case of a single mode laser, and we present
some useful results about the respective contributions of
the “gain” and “loss” mechanisms to the value of the
laser linewidth. In Section 3, we use these results, and
some algebra derived from the semi-classical approach by
Siegman in reference [14], in order to calculate the laser ex-
cess noise in a fairly general and fully quantum approach.
We do recover the usual expression of the Petermann
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factor above threshold, but the excess noise is found to
depend on the laser gain below threshold, and on the noise
analysis frequency both below and above threshold.

2 Calculating the laser phase noise

We consider the round-trip equation describing a single
mode laser close to threshold. During one round trip, the
mode will experience losses γ and gain g, which compen-
sates each other so that the value of the net gain γg is
equal to one. The generic transformation of the laser mode
operator a along a cavity round trip will have thus the fol-
lowing form:

âout = γgâin +
∑

i

αib̂vac,i +
∑

j

βj b̂
†
sp,j , (3)

where the b̂vac,i are “vacuum noise” operators associ-
ated to the losses during the cavity round trip, while the
b̂sp,j are noise operators corresponding to the spontaneous
emission of the amplifier. We assume that the i and j

modes are distinct, so that b̂ and b̂† never appear together
for the same mode (this would correspond to a phase-
dependent mechanism, such as phase conjugation, which
does not occur usually in a laser amplifier). The normal-
ization of the coefficients αi, βj is chosen so that all modes
obey standard commutation relations [b̂l, b̂†m] = δlm. Since
the input-output transformation given by equation (3)
must be unitary, i.e. preserve the commutation relations,
one must have [âout, â

†
out] = [âin, â

†
in] = 1, so that

1 = |γg|2 +
∑

i

|αi|2 −
∑

j

|βj |2 . (4)

Assuming, as said above, that for a lasing mode one has
γg = 1, one obtains thus∑

i

|αi|2 =
∑

j

|βj |2 . (5)

This equation establishes a relation between the noises
due to the cavity loss (“vacuum” noise in the i modes)
and the cavity gain (spontaneous emission noise in the j
modes), which will turn out to be useful in the following.

In order to deal with the laser phase noise, it is con-
venient to define for each mode the phase quadrature op-
erator Y = 1

2i (â − â†); the corresponding mode will be
indicated by the same lower index as in equation (3). To
obtain the expression of the laser linewidth, we express
the variation of the source term δΓY for the laser phase
noise during a round-trip time δt = τrt = 2L/c (c is the
speed of light, and 2L the total cavity length):

τrt
δΓY

δt
= Yout − Yin

=
∑

i

αiYvac,i +
∑

j

βjYsp,j . (6)

It should be mentioned that equation (6) is valid above
threshold, owing to the well-verified approximation that
phase noise experiences no restoring force from the gain
saturation mechanism. On the other hand, a correct han-
dling of the amplitude noise, described by the amplitude
quadrature operators X = 1

2 (a + a†), would have to take
into account the gain saturation mechanism, which is not
the purpose of the present paper.

Using standard calculations, the laser linewidth above
threshold is given as a function of the (symmetrically or-
dered) variance of δΓY as

∆ω =
( c

2L

) 〈δΓ 2
Y 〉

4|〈aout〉|2 , (7)

where |〈aout〉| = |〈ain〉| is the mean value of intracavity
field of the lasing mode. We will assume in the follow-
ing that all fields can be considered constant within the
laser cavity (mean-field approximation); deviations from
this approximation lead to the so-called “longitudinal
Petermann factor” [11,15]. Using 〈Y 2

vac,i〉 = 〈Y 2
sp,j〉 = 1/4

for each mode in the vacuum state, one obtains

〈δΓ 2
Y 〉 =

1
4


∑

i

|αi|2 +
∑

j

|βj |2

 . (8)

From this expression and equation (5), it is clear that
〈δΓ 2

Y 〉 can be split into two equal parts:

〈δΓ 2
vac〉 =

1
4

(∑
i

|αi|2
)
, 〈δΓ 2

sp〉 =
1
4


∑

j

|βj |2

 .

(9)

Therefore, the laser linewidth can be written as

∆ω =
( c

2L

) 〈δΓ 2
sp〉

2|〈aout〉|2 =
( c

2L

) 〈δΓ 2
vac〉

2|〈aout〉|2 . (10)

As often occurs in quantum mechanics [3,16], one has the
choice to attribute the linewidth either completely to the
gain mechanism (this would correspond to a “normal” or-
dering of the operators), or to the loss mechanism (this
would correspond to an “antinormal” ordering of the op-
erators), or to split half and half (“symmetrical” ordering,
which is preferred here). In this last point of view, the
noise in a laser above threshold has two equally contribut-
ing origins, namely the vacuum modes and the amplifier.

As an example, let us consider the simple case where a
single mode experiences a gain g and round-trip reflexion
r, such that gr = 1. One has then

âout = gr âin + g
√

1 − |r|2 b̂vac +
√

|g|2 − 1 b̂†sp . (11)

It is straightforward to see that the two phase noise terms
have an equal contribution 〈δΓ 2

sp〉 = 〈δΓ 2
vac〉 = 1

4 (|g|2 −
1) (since |gr| = 1). Since this value leads directly to the
standard Schawlow-Townes value for the laser linewidth
(in the mean field approximation [17]), we will consider in
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the next section that 〈δΓ 2
ST〉 = 1

4 (|g|2−1) as the reference
value, with respect to which the “excess linewidth” will
be evaluated. The so-called “Petermann factor” will thus
appear as the ratio between the actual value of 〈δΓ 2

vac〉 for
the lasing mode and the reference value 〈δΓ 2

ST〉.

3 Derivation of the Petermann excess noise
factor

3.1 Framework of the calculation

Our purpose now is to generalize the result of the previ-
ous section to a single mode laser with a multimode cavity
structure, in order to calculate explicitly the Petermann
excess noise factor. This calculation will apply for instance
to the multimode transverse structure of a (stable or un-
stable) laser cavity with strong aperturing losses. We will
consider the situation of a homogeneously broadened gain
medium, where all cavity modes essentially see the same
gain medium [18]. The gain value is therefore the same for
all modes, while on the other hand separate and indepen-
dent spontaneous emission noise operators are attributed
to each mode. As shown in reference [11], the essential
new feature which will create excess noise is a redistribu-
tion of the noise between the different laser modes, which
is carried out by loss modes which are common to sev-
eral laser modes. As a matter a fact, by generalizing the
mathematical formalism introduced in reference [11], the
present results confirm that “loss-induced coupling”, i.e.
the fact that laser modes are coupled by sharing noise due
to common loss modes, is central to the issue of excess
phase noise (see also the Appendix).

As a last point about the scope of the present calcula-
tion, we point out that our whole approach is based upon
the linearized input-output formalism which is standard in
quantum optics [11–13]. This formalism will be valid either
below threshold, in the linear gain regime, or above thresh-
old, where the quantum fluctuations can be linearized
around the semi-classical values. In the latter case, our
model gives a correct description of the (relatively small)
quantum fluctuations around the semi-classical values. On
the other hand, it is well known that such a linearized
approach breaks down right on singularity points. In the
steady state of macroscopic lasers, this is generally not a
limitation, because quantum fluctuations are very small in
relative value, and they may increase a lot before the lin-
earization actually breaks down. Taking into account the
above restrictions, the calculations presented below will be
used to get predictions both below and above threshold.

3.2 Classical non-orthogonal modes

Let us consider first the multimode cavity structure with-
out the gain mechanism (“cold cavity” situation). For
quantum consistency, the round-trip equation should in-
clude not only the “laser” modes, which will see the gain,
but also the “vacuum” modes which correspond to the

various loss channels. We introduce therefore a set of nor-
malized and orthogonal (classical) mode functions, which
correspond to all input modes into the system. Any mode
can be decomposed using this set as a basis, and will be
written as a column vector {ein} (input modes) or {eout}
(output modes). For instance, the n-th basis vector is rep-
resented by a column with 1 on the n-th line and 0 every-
where else. The general input-output transformation for
the cold cavity can then be written:

{eout} = S{ein}. (12)

Since the set of mode functions will be used later on as a
quantization basis, the scattering matrix S is by definition
unitary, in order to insure that all operator commutation
relations will be preserved in the input-output evolution.
Since the modes can be split into two sets of “laser” and
“loss” modes, it is convenient to introduce (Hermitian)
projection operators P and Q, such as

P 2 = P, Q2 = Q, P +Q = 1 , (13)

where P projects on the “laser” modes subset, and Q on
the “loss” modes subset. One obtains therefore

P{eout} = PS (P +Q){ein} = TP{ein} + PSQ{ein},
(14)

where PSQ{ein} corresponds to the contribution of the
loss modes, while the “truncated” scattering matrix T =
PSP describes the input-output transformation for the
laser modes only. In general, T is no more unitary, but
one can find its eigenvalues and eigenvectors under the
form [14]

TU = UG , (15)

where U corresponds to a matrix with columns formed
by the normalized eigenvectors {un} of T , and G to a
diagonal matrix formed by the corresponding eigenvalues
γn. In general, the eigenvectors of T are non-orthogonal
(see again ref. [11] for a simple illustrative example), and
therefore U is not unitary. More precisely, we note that
U†U = I + J , where I is the unit matrix, and J is a
purely non-diagonal Hermitian operator.

Defining V = (U−1)†, and multiplying both sides of
equation (15) by V †, one obtains V †T = GV †, and there-
fore

T †V = V G† . (16)

This equation shows that V corresponds to a matrix with
columns formed by the eigenvectors {vn} of T †, while G†
is a diagonal matrix formed by the corresponding eigen-
values γ∗n [19]. One obtains immediately from the defini-
tion of V that, given the normalized eigenvectors {un},
the vectors {vn} cannot be normalized, but that one has
(“bi-orthogonality” relations):

V †U = U†V = I . (17)
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Then, by applying the operator PV † = PU−1 to equa-
tion (14), and using V †T = GV †, one obtains

PV †P{eout} = G
(
PV †P{ein}

)
+ PV †PSQ{ein} . (18)

This operation (projection on the bi-orthogonal) corre-
sponds to moving into a basis where the in-out trans-
formation for the laser modes is diagonal. However, this
basis, which is made from the vectors {vn}, is both non-
normalized and non-orthogonal, and is not appropriate for
quantization; we will come back to that in detail below.

3.3 Operatorial equations for a cavity round trip

Up to now, we considered only classical mode functions,
so that all modes vectors were c-numbers. We will see
now how to introduce the mode operators. In the initial
orthonormal basis, a quantized field operator can be writ-
ten simply as Â = {â}, where each operator ân on the n-th
line corresponds to the destruction of one photon in one
mode of the basis set. One has thus {âout} = S{âin}, and
it can be checked easily that this transformation preserves
all commutation relations, due to the unitarity of S. Then
the mode operator associated to the normalized eigenvec-
tor un will be the linear combination (PU†P{â})n, which
insures that the operator ({â}†PUP )n (here n is a col-
umn index) creates a photon in mode un. Though each
of these combinations taken separately is acceptable as a
mode operator, the (PU†P{â})n taken all together are
not acceptable as a set of mode operators, due to the
non-orthogonality of the un vectors. As a matter of fact,
it can be checked easily that the commutator between
(PU†P{â})n and ({â}†PUP )m is simply the scalar prod-
uct (un, um), which is one for n = m, but is generally
non-zero if n �= m. The alternative quantity (PV †P{â})n

is not acceptable either as a mode operator, again because
it does not fulfill basic commutation rules. We note that
this behaviour, due to the non-unitarity of T , is very dif-
ferent from the one encountered for a unitary operator,
such as S itself. Denoting the matrices of eigenvalues and
eigenvectors of S with a subscript S, the same procedure
would yield

SUS = USGS , VS = (U−1
S )† = US ,

U†
S{âout} = U†

SS{âin} = GSU
†
S{âin} . (19)

It is thus clear that the set of operators U†
S{a} correspond

to the normalized and orthogonal eigenmodes of S, while
neither PU†P{â} nor PV †P{â} can play this role for T .
We will show below that an acceptable operator equation
can nevertheless be obtained, by considering separately the
particular operator which corresponds to the lasing mode.

The next step is to introduce the gain mechanism.
From the hypothesis discussed above, the gain matrix is
gP+Q, and independent spontaneous emission noise adds
up to each of the initial laser modes [20]. Equation (14)
can thus be written in the operatorial form:

P{âout} = g (TP{âin} + PSQ{âin}) +

+
√
|g|2 − 1 P{b̂†sp} , (20)

where P{b̂†sp} is a column vector of spontaneous emission
noise operators, each one corresponding to one mode of
the “laser” subset. Equation (18) can then be written as

P V †P{âout} = gG
(
PV †P{âin}

)
+gPV †PSQ{âin} +

√
|g|2 − 1PV †P{b̂†sp}. (21)

This equation provides the basis for the excess noise cal-
culation shown below.

3.4 Calculation of the excess noise

Generally speaking, the quantity {aout} − {ain} = (S −
I){ain} = δ({ain}) represents the variation of the mode
operators during a round trip. For the modes of the laser
subset, considered first below threshold, equation (21) can
be used to obtain the fluctuations in the steady state, by
writing that δ(P{ain}) = P{aout} − P{ain} = 0 during a
round trip [11]. This equality is actually valid for fluctu-
ations at zero frequency, and a more detailed analysis of
the fluctuation spectrum will be considered in Section 3.5
below. One obtains thus

(I − gG)PV †P {âout} =

gPV †PSQ{âin} +
√

|g|2 − 1PV †P{b̂†sp} . (22)

Taking the m-th line of equation (22), one obtains for any
m:

(PV †P {âout})m =
1

1 − gγm

×
(
gPV †PSQ{âin}+

√
|g|2 − 1PV †P{b̂†sp}

)
m
. (23)

Let us consider now the mode with the smallest losses,
which will be called the “lasing mode” and denoted by
the index n. It appears that as g approaches its thresh-
old value 1/γn, the behaviour of the lasing and non-lasing
modes will be quite different. For non-lasing modes, the
effective gain 1/(1 − gγm) will remain finite, so that the
zero-frequency noise in the mode can be obtained from
equation (23). For the lasing mode, the effective gain
1/(1 − gγn) will diverge, until it is limited by saturation
effects. Then the source term for the noise in the lasing
mode will be obtained as the variation of the correspond-
ing operator during a round trip, as shown in Section 2.
Using as previously the notation Y = 1

2i (â−â†), the source
term for the phase noise term in the lasing mode can still
be written:

τrt
δΓY

δt
= (PU†P{Yout})n − (PU†P{Yin})n . (24)

This quantity can be obtained by using the identity V † =
U† + (I − U†U)V †, which implies:

(PU†P{âout})n = (PV †P{âout})n

+(P (U†U − I)PV †P {âout})n. (25)
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Since (U†U − I) is purely non-diagonal, the expres-
sion (P (U†U − I)PV †P {âout})n involves the values of
(PV †P {âout})m withm �= n. These terms can be deduced
from equation (23), and they are not diverging when ap-
proaching the threshold. On the other hand, it is more con-
venient for the lasing mode to come back to equation (21),
which has no diverging term. Inserting equation (25) in
the n-th line of equation (21), one obtains the round-trip
evolution for the lasing mode

(PU†P {âout})n = gγn (PU†P {âin})n

+
(
gPV †PSQ{âin} +

√
|g|2 − 1PV †P{b̂†sp}

)
n

+(1 − gγn)
(
P (U†U − I) (I − gG)−1

×
[
gPV †PSQ{âin} +

√
|g|2 − 1PV †P{b̂†sp}

])
n
. (26)

Assuming now that the gain g is such that gγn = 1, one
obtains from equations (24) and (26):

τrt
δΓY

δt
= (1/γn) (PV †PSQ{Yin})n

+
√

1/|γn|2 − 1 (PV †P{Ysp})n . (27)

One recovers therefore for the lasing mode the generic re-
lation given by equation (6).

3.5 Value of the excess noise factor at threshold

As shown in the previous section, we can now obtain the
laser linewidth by considering either the “vacuum” or the
“spontaneous emission” noise term in equation (27). For
the sake of completeness, let us calculate both by intro-
ducing the column matrices:

P{δΓvac} = (1/γn) (PV †PSQ{Yin}) ,
P{δΓsp} =

√
1/|γn|2 − 1 (PV †P{Ysp}) . (28)

The corresponding covariance matrices are then

P 〈{δΓvac}{δΓvac}†〉P =

(PV †PSQ)Vin(Q†S†P †V P †) /|γn|2,
P 〈{δΓsp}{δΓsp}†〉P =

(PV †P ) Vin (P †V P †)(1/|γn|2 − 1) , (29)

where Vin is a diagonal matrix with all elements equal to
〈vac|Y 2

in|vac〉 = 1
4 . Using SS† = 1 and the properties of the

projection operators, one obtains for the first covariance
matrix:

P 〈{δΓvac}{δΓvac}†〉P =(
PV †PS (1 − P ) S†PV P

)
/(4|γn|2) =(

PV †V P − PV †TT †V P
)
/(4|γn|2) =(

PV V †P − PGV †V G†P
)
/(4|γn|2) , (30)

while the second one is simply

P 〈{δΓsp}{δΓsp}†〉P =(
PV †V P

)
(1 − |γn|2)/(4|γn|2) . (31)

Taking the variance of the n-th mode (n-th component on
the diagonal of the covariance matrix), and dividing by
the reference value 〈δΓ 2

ST〉 = 1
4 (1/|γn|2 − 1), one obtains

two expressions for the excess noise factor for mode n:

Kvac,n =
(V †V −GV †V G†)n,n

1 − |γn|2 ,

Ksp,n = (V †V )n,n. (32)

Since G is a diagonal matrix, it is easy to show that
1− |γn|2 actually cancels out between the numerator and
denominator of Kvac,n, so that both values end up to be
Kn = (V †V )n,n. This value is just the squared modulus
of the biorthogonal vector vn for mode n, which is the
standard result [5,6].

Finally, we point out that as long as the laser is be-
low threshold (i.e. gγn < 1), the step of the calculation
going from equation (26) to equation (27) cannot be car-
ried out; correspondingly, equation (5) is not valid, and
the full equation (26) should be used to obtain the excess
noise. An example of such calculation was presented in
reference [11], in the simple case of a two-mode problem.
As a general rule, the excess spontaneous emission noise
will decrease with g, down from the maximum value K ob-
tained at threshold. As a consequence, it is not correct to
assume that the spontaneous emission noise in the lasing
mode is enhanced by a factor K, irrespective of the gain
value. Though it can be evaluated from the properties of
the “cold cavity” alone, the excess noise factor gets its pre-
cise meaning only at or above threshold. It may be worth
pointing out also that below threshold there is no more
semi-classical field acting as a local oscillator to pin out
the lasing mode. Therefore, though equation (26) remains
valid in principle, an operational definition of how to mea-
sure the “noise in the lasing mode” would be needed.

3.6 Frequency spectrum of the excess noise

The importance of the last term in equation (26) can also
be illustrated by looking at the noise spectrum of the
fluctuations. For fluctuations at non-zero frequency, the
round-trip equation δ(P{ain}) = 0 which was used before
should be replaced by τrt

d
dtP{ain} = P{aout} − P{ain}.

It is actually more convenient to work in frequency space,
where the time derivative becomes iΩP{ain}, Ω = ωτrt
being a dimensionless frequency. The previous equations
thus remain valid, by simply changing (1 − gγm) into
(1 − gγm + iΩ). Equation (26) thus becomes

(PU†P {âout})n = gγn (PU†P {âin})n

+
(
gPV †PSQ{âin} +

√
|g|2 − 1PV †P{b̂†sp}

)
n

+(1 − gγn + iΩ)
(
P (U†U − I) (I − gG+ iΩI)−1

×
[
gPV †PSQ{âin} +

√
|g|2 − 1PV †P{b̂†sp}

])
n

(33)
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and by taking gγn = 1:

(PU†P{âout})n = (PU†P{âin})n

+
(
gPV †PSQ{âin} +

√
|g|2 − 1PV †P{b̂†sp}

)
n

+iΩ
(
P (U†U − I)(I − gG+ iΩI)−1

×
[
gPV †PSQ{âin} +

√
|g|2 − 1PV †P{b̂†sp}

])
n
. (34)

This equation shows that the excess quantum noise is
frequency dependent. Since the case Ω = 0 was treated
above, it is particularly interesting to consider now the
high-frequency case Ω 	 (1 − γm/γn) for all m �= n, so
that iΩ(I − gG + iΩI)−1 = I. Then the term which was
previously responsible for the K factor cancels out, and
using UV † = I, one obtains

(PU†P{âout})n = (PU†P{âin})n

+
(
PU†PSQ{âin}+

√
|g|2 − 1PU†P{b̂†sp}

)
n
, (35)

which is just the usual equation for the lasing mode in
the presence of gain and loss: the excess noise has thus
completely disappeared. We note that high values of K
correspond to the existence of at least one eigenvalue γm

close to γn (see again [11]). In that case, the normal-
ized cut-off frequency (1 − gγm) = (1 − γm/γn), is also
very small: it appears therefore that the highest the ex-
cess noise, the smallest its bandwidth. This bandwidth
corresponds simply to the effective damping of the mode
nearest to threshold, which gives the highest contribution
to the excess noise. Finally, we also note that as far as
the laser linewidth is concerned, the zero-frequency anal-
ysis presented in the previous section will remain valid, as
long as the laser linewidth is much smaller than the ex-
cess noise bandwidth; this condition is generally fulfilled
in practice [21].

This frequency-dependent behaviour of the excess
noise was recently studied theoretically and demonstrated
experimentally for the first time by A.M. van der Lee et al.
[21], in the case of two non-orthogonal polarisation modes
in a HeXe laser. The calculation presented here clearly
shows that a decrease when increasing the analysis fre-
quency is a general feature of the excess noise. Moreover,
according to equation (26), a similar drop in the apparent
value of the excess noise should be seen by looking at the
spontaneous emission noise below threshold, as a function
of the gain value: the highest theK value, the sharpest the
drop. However, as said above, measuring and calibrating
the output noise below threshold may be more difficult
to realize than the convincing spectral analysis which was
carried out in [21].

4 Conclusion

As a conclusion, we have presented a simple quantum cal-
culation of the excess noise factor which apply to lasers
with non-orthogonal eigenmodes. Within the approxima-
tions quoted above (homogeneous and uniform gain, mean

field approximation), this result is demonstrated exactly
and rather simply in a fully quantum framework. As was
explained in reference [11], this quantum calculation does
not introduce any “set of non-orthogonal eigenmodes”,
which would not permit a proper quantization. All cal-
culations are based on the orthogonal sets {âin}, {âout}.
On the other hand, the non-orthogonal combinations
PU†P{âout}, which represent the possible lasing modes,
are generally non-commuting. This means that they are
“incompatible” in a quantum-mechanical sense [4]: by hy-
pothesis, only one of these modes can be lasing at a
time (which one depends on the cavity parameters, see
ref. [11]). Therefore, in a quantum framework, the non-
orthogonal modes never appear as a “set”: only one of
them is used at a time, in order to determine a quan-
tization basis in which the real modes actually remain
orthogonal.

A last point which was raised recently [22] is whether
very large values of K could provide a route towards a
thresholdless laser. No such effect can appear in our lin-
earized analysis, which applies to “macroscopic” lasers,
where the threshold condition is always determined by the
compensation of gain and loss. On the other hand, it ap-
pears from equation (27) that the number of spontaneous
emission photons in the mode at threshold is actually in-
creased by a factor which is just K. In our model, this
effect is simply attributed to the presence of other modes,
which are themselves close to threshold, and which leak
into the mode of interest. The relevant physics for un-
derstanding the usual Petermann excess noise factor is
thus the one of coupled laser oscillators, which does not
say much about thresholdless lasing. We note however
that both types of effects may mix up when considering a
coupled-mode microcavity laser; a full quantum descrip-
tion of such a system remains an open question.

We thank A.E. Siegman for sending us reference [14] prior to
publication, and we acknowledge useful discussions with J.P.
Woerdman and N.J. van Druten. This work was completed as
part of the ESPRIT project number 20029 “Acquire” and of
the European TMR network “Microlasers and cavity QED”.

Appendix: Loss-induced coupling

We give here some mathematical details about the defini-
tion of loss-induced coupling. The truncated matrix T (see
eq. (14)) can be diagonalized in an orthogonal basis if and
only if it is normal, i.e. T †T = TT †. This may occur even
if T is non-unitary, i.e. in the presence of losses, and it is
not so clear whether the excess noise effects should be at-
tributed to losses, or to direct coupling between the laser
modes, or to loss-induced coupling where laser modes are
coupled via loss modes. We give below some arguments to
support the loss-induced coupling approach.

In all cases, it is possible, as written above, to diagonal-
ize T in a non-orthogonal basis {un}. Then one may pick
up a vector in this basis, and iteratively build an orthog-
onal basis {wn} by constructing mutually orthogonal lin-
ear combinations of the {un} (Schmidt orthogonalization
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procedure). For carrying out this procedure, the eigenvec-
tors of T should be ordered by decreasing modulus of their
eigenvalue, the last one being thus the mode with the low-
est losses (lasing mode). Since T is diagonal in the {un}
basis, it is simple to show that it is triangular in the {wn}
basis. The lasing mode may thus be coupled to all other
(sub-threshold) modes.

Using this procedure, the basis for the laser modes is
redefined through a unitary transform, in such a way that
all direct coupling terms between the laser modes have
been removed. Then the remaining non-diagonal terms
in the triangular matrix represent precisely loss-induced
coupling. On the other hand, losses which affect indepen-
dently the (properly redefined) modes do not contribute
to excess noise [11]. When defined in such a way, i.e. up
to an arbitrary unitary transform within the laser modes,
it appears than the existence of loss-induced coupling is
a necessary and sufficient condition to get a non-normal
truncated scattering matrix T : loss-induced coupling just
means that there is no possible orthogonal basis where the
triangular coupling matrix can be made diagonal.
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